UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Information Technology Engineering

Second Year with Effect from AY 2020-21

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019-2020)

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021) Semester III

	Semester III							
Course Code	Course Name		hing Scho ntact Hou		Credits Assigned			
Coue		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ITC301	Engineering Mathematics-III	3		1	3		1	4
ITC302	Data Structure and Analysis	3			3			3
ITC303	Database Management System	3			3			3
ITC304	Principle of Communication	3			3			3
ITC305	Paradigms and Computer Programming Fundamentals	3			3			3
ITL301	Data Structure Lab		2			1		1
ITL302	SQL Lab		2			1		1
ITL303	Computer programming Paradigms Lab		2			1		1
ITL304	Java Lab (SBL)		4			2		2
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA		4 ^{\$}			2		2
	Total	15	14	1	15	07	1	23

Commented [a1]: SEM III subject names and course code. No changes made in Teaching scheme and Credits Assigned

Commented [a2]: IT added in course code indicates branch course number i.e. ITC301 (IT branch Course number 301), Similarly for Lab and Mini-Project, DLOC

Commented [a3]: SEM III subject names and course code.

				Theor	y		Term Work	Pract/ oral	Total	No changes made in Theory, TW, Pract/Oral, Total
Course Code	Course Name	Intern	nal Asse	ssment	End Sem. Exam	Exam. Duration (in Hrs)				
		Test 1	Test2	Avg.						
ITC301	Engineering Mathematics-III	20	20	20	80	3	25		125	Commented [a4]: Syllabus pending
ITC302	Data Structure and Analysis	20	20	20	80	3			100	
ITC303	Database Management System	20	20	20	80	3			100	
ITC304	Principle of Communication	20	20	20	80	3			100	
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80	3			100	
ITL301	Data Structure Lab						25	25	50	
ITL302	SQL Lab						25	25	50	
ITL303	Computer programming Paradigms Lab						25	25	50	
ITL304	Java Lab (SBL)						25	25	50	Commented [a5]: Sir is it possible to split TW of 50 marks
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA						2 <mark>5</mark>		25	into TW 25 and Pract/Oral 25 marks. Commented [a6]: Sir if Mini-Project is of 25 marks then
	Total			100	400		150	100	750	total 775 will become 750 please check
L	\$ indicates work load of Learner	(Not F	aculty),	for Mi	ni Proje	ct		1 1		Commented [a7]: It will change to 750

Examination Scheme

		Se	emester	IV							Commented [a8]: SEM IV subject names and course code.	
Course Code	Course Name	Те	eaching S Contact I	Scheme			Credits As	ssigned			No changes made in Teaching scheme and Credits Assigned	
Code		Theory	y Prac	t. T	fut. 1	Theory	Pract.	Tut.	Total			
ITC401	Engineering Mathematics-IV	3			1	3		1	4		Commented [a9]: Syllabus pending	
ITC402	Computer Network and Network Design	3				3			3			
ITC403	Operating System	3				3			3			
ITC404	Automata Theory	3				3			3			
ITC405	Computer Organization and Architecture	3				3			3			
ITL401	Network Lab		2				1		1			
ITL402	Unix Lab		2				1		1			
ITL403	Microprocessor Lab		2				1		1			
ITL404	Python Lab (SBL)		4				2		2			
ITM401	Mini Project – 1 B for Python based automation projects		4 ^{\$}				2		2			
_	Total	15	14		1	15	7	1	23			
					Exami	nation Sch	neme				Commented [a10]: SEM IV subject names and course	
				Theor	ry		Term Work	Pract/ oral	Total		code. No changes made in Theory, TW, Pract/Oral, Total	
Course Code	Course Name	Intern	al Assess	ment	End Sem. Exam.	Exam. Duratio . (in Hrs	n					
		Test 1	Test 2	Avg.								
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125			
ITC402	Computer Network and Network Design	20	20	20	80	3			100			
ITC403	Operating System	20	20	20	80	3			100			
ITC404	Automata Theory	20	20	20	80	3			100			
ITC405	Computer Organization and Architecture	20	20	20	80	3			100			
ITL401	Network Lab						25	25	50			
ITL402	Unix Lab						25	25	50		Commented [a11]: Sir please check the pdf shared has removed this 25 marks . It will have only TW nor pract/or. Total will be 25 instead of 50 so final total will be 750 inst	
ITL403	Microprocessor Lab						25	25	50			
ITL404	Python Lab (SBL)						25	25	50		of 775.	
ITM401	Mini Project – 1 B for Python based automation projects						25	25	50		Commented [a12]: Sir is it possible to split TW of 50 marks into TW 25 and Pract/Oral 25 marks.	
	Total			100	400		150	75	775		Commented [a13]: This sem total will be 775 Please check	

\$ indicates work load of Learner (Not Faculty), for Mini Project

Course	Course Name		ing Sche tact Hou			Credits As	signed	
Code		Theory	Prac t.	Tut.	Theory	TW/Pract	Tut.	Total
ITC301	Engineering Mathematics-III	03	-	01	03	-	01	04

		Examination Scheme									
~		Inter		heory sessment							
Course Code	Course Name	Test1	Test2	Avg of Test 1 & 2	End Sem Exam		Pract	Oral	Total		
ITC301	Engineering Mathematics-III	20	20	20	80	25	-	-	125		

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II

Course Objectives:

Sr. No.	Course Objectives
The court	se aims:
1	To learn the Laplace Transform, Inverse Laplace Transform of various functions, its applications.
2	To understand the concept of Fourier Series, its complex form and enhance the problem solving skills.
3	To understand the concept of complex variables, C-R equations with applications.
4	The fundamental knowledge of Trees, Graphs etc.
5	To understand the basic techniques of statistics like correlation, regression, and curve fitting for data analysis, Machine learning, and AI.
6	To understand some advanced topics of probability, random variables with their distributions and expectations.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy		
On suc	ccessful completion, of course, learner/student will be able to:			
1	Understand the concept of Laplace transform and its application to solve the real integrals in engineering problems.	L1, L2		
2	Understand the concept of inverse Laplace transform of various functions and its applications in engineering problems.	L1, L2		
3	Expand the periodic function by using the Fourier series for real-life problems and complex engineering problems.	L1, L2, L3		
4	Understand complex variable theory, application of harmonic conjugate to get orthogonal trajectories and analytic functions.	L1, L2, L3		
5	Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning, and AI.	L2, L3		
6	Understand the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.	L1, L2		

Module	Detailed Contents	Hours	CO Mapping	Commented [M14]: Made the column with left center
	Module: Laplace Transform		CO1	aligned text
	1.1 Definition of Laplace transform, Condition of Existence of Laplace transform.			
	1.2 Laplace Transform (L) of standard functions like e^{at} , $sin(at)$,			
	$cos(at)$, $sinh(at)$, $cosh(at)$ and $t^n, n \ge 0$.			
	1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem,			
	Second Shifting Theorem, Change of Scale, Multiplication by t,			Commented [M15]: Capitalised the first letter. Removed
01	Division by t, Laplace Transform of derivatives and integrals	6		property word
	(Properties without proof).			Commented [M18]: Removed Hours in the column text as
	1.4 Evaluation of real improper integrals by using Laplace Transformation.			the heading of the column already has hours.
				Commented [M16]: Added the word "improper"
	Self-learning Topics: Laplace Transform: Periodic functions, Heaviside's			
	Unit Step function, Dirac Delta Function, Special functions (Error and			
	Bessel)			Commented [M17]: Added laplace transform of special
	Module: Inverse Laplace Transform		CO1,	functions . Edited a little bit
	2.1 Definition of Inverse Laplace Transform, Linearity property, Inverse		CO1, CO2	
	Laplace Transform of standard functions, Inverse Laplace transform using		002	Commented [M19]: Edited. Added standard functions.
	derivatives.			
02	2.2 Partial fractions method to find Inverse Laplace transform.	6		Commented [M20]: Removed word "finding"
-	2.3 Inverse Laplace transform using Convolution theorem (without proof)	Ŭ		
	Self-learning Topics: Applications to solve initial and boundary value			
	problems involving ordinary differential equations.			
	Module: Fourier Series:		CO3	
	3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's			
	Identity			
03	(without proof).	6		
05	3.2 Fourier series of periodic function with period $2 \square \square$ and $2l$.	0		
	3.3 Fourier series of even and odd functions.			
	3.4 Half range Sine and Cosine Series.			

	Self-learning Topics: Orthogonal and orthonormal set of functions, Complex form of Fourier Series, Fourier Transforms.			
04	Module: Complex Variables:4.1 Function $f(z)$ of complex variable, Limit, Continuity andDifferentiability of $f(z)$, Analytic function: Necessary and sufficient conditions for $f(z)$ to beanalytic (without proof).4.2 Cauchy-Riemann equations in Cartesian coordinates (without proof).4.3 Milne-Thomson method: Determine analytic function $f(z)$ when realpart(u), imaginary part (v) or its combination $(u+v / u-v)$ is given.4.4 Harmonic function, Harmonic conjugate and Orthogonal trajectories.Self-learning Topics: Conformal mapping, Linear and Bilinear mappings, cross ratio, fixed points and standard transformations.	6		Commented [M21]: Italicized f(z). Increased spacing between points. Edited 4.3 . Capitalised important terms

Module	Detailed Contents	Hours	CO Mapping	Commented [M22]: Made the column with left center aligned text
05	 Module: Statistical Techniques 5.1 Karl Pearson's coefficient of correlation (r) 5.2 Spearman's Rank correlation coefficient (R) (with repeated and non-repeated ranks) 5.3 Lines of regression 5.4 Fitting of first and second degree curves. Self-learning Topics: Covariance, fitting of exponential curve.	6	CO5	Commented [M23]: Broke the table according to page to maintain uniformity
	Module: Probability 6.1 Definition and basics of probability, conditional probability.		CO6	Commented [M24]:
06	 6.2 Total Probability theorem and Bayes' theorem. 6.3 Discrete and continuous random variable with probability distribution and probability density function. 6.4 Expectation, Variance, Moment generating function, Raw and central moments up to 4th order. 	6		Commented [M25]: Edited this point 6.4
	Self-learning Topics: Skewness and Kurtosis of distribution (data).			

References:

1.	Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication.	reference
2.	Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited.	
3.	Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa Publication.	
4.	Complex Variables and Applications, Brown and Churchill, McGraw-Hill Education.	
5.	Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill Education.	
6.	Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel,	
	Schaum's Outline Series.	

Term Work:

General Instructions:

- 1. Batch wise tutorials have to be conducted. The number of students per batch will be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on the entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This will be considered as a mini project in Engineering Mathematics. This project will be graded out of 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1. Attendance (Theory and Tutorial)	05 marks
2. Class Tutorials on entire syllabus	10 marks
3. Mini project	10 marks

Commented [a26]: No Text Book mentioned only reference books are listed.

Assessment:

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1st class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2^{nd} class test has to be conducted (Internal Assessment II) when an additional 35% syllabus is completed. The duration of each test will be for one hour.

End Semester Theory Examination:

- 1. The question paper will comprise a total of 6 questions, each carrying 20 marks.
- 2. Out of the 6 questions, 4 questions have to be attempted.
- 3. Question 1, based on the entire syllabus, will have 4 sub-questions of 5 marks each and is compulsory.
- 4. Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.
- 5. Each sub-question in (4) will be from different modules of the syllabus.
- 6. Weightage of each module will be proportional to the number of lecture hours, as mentioned in the syllabus.

Commented [M27]: Made majo changes here. Kindly compare with the original draft.

Course Code	Course	Teaching (Contact	g Scheme Hours)	Credits Assigned				
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC302	Data Structure and Analysis	03			03			03

Course	Course	Examination Scheme								
Code	Name	Theory Marks								
		Internal assessment			End	Term Work	Pract. /Oral	Total		
		Test1	Test 2	Aug	Sem.		Flact. /Olai	Total		
		TestI	Test 2	Avg.	Exam					
ITC302	Data									
	Structure and Analysis	20	20	20	80			100		

Course Objectives:

Sr. No.	Course Objectives							
The cours	The course aims:							
1	The fundamental knowledge of data structures.							
2	The programming knowledge which can be applied to sophisticated data structures.							
3	The fundamental knowledge of stacks queue, linked list etc.							
4	The fundamental knowledge of Trees, Graphs etc.							
5	The fundamental knowledge of different sorting, searching, hashing and recursion							
	techniques							
6	The real time applications for stacks, queue, linked list, trees, graphs etc.							

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Classify and Apply the concepts of stacks, queues and linked list in real life problem solving.	L1, L2, L3
2	Classify, apply and analyze the concepts trees in real life problem solving.	L2, L3,L4
3	Illustrate and justify the concepts of graphs in real life problem solving.	L3, L5
4	List and examine the concepts of sorting, searching techniques in real life problem solving.	L2, L3, L4
5	Use and identify the concepts of recursion, hashing in real life problem solving.	L3, L4
6	Examine and justify different methods of stacks, queues, linked list, trees and graphs to various applications.	L3, L4, L5

Commented [a30]: Course outcomes with bloom's level

Commented [a29]: Format of course objectives

Prerequisite: C Programming

Sr. No.	Module	Detailed Content	Hours	CO Mapping	
0	Prerequisite	Defining, Declaring and Initialization of structure variables. Accessing members of a structure, Array of structures, Nested structures, Pointers to structures. Passing structure, structure members, structure arrays and pointer to structure as function parameters. Self-referential structures.	02		
Ι	Introduction to Stacks, Queues and Linked Lists	Introduction to Data Structures: Linear and Non Linear Data Structures, Static and Dynamic Data Structures. Concept of Stack and Queue. Array Implementation of Stack and Queue, Circular Queue, Double Ended Queue, Priority Queue.	08	CO1	Commented [a31]: added
		Concept of Linked Lists. Singly linked lists, doubly linked lists and circular linked lists.			
		Insertion, deletion, update and copying operations with Singly linked lists, doubly linked lists and circular linked lists. Reversing a singly linked list.			
		Self-learning Topics: Linked List Implementation of Stack, Linked List implementation of Queue, Circular Queue, Double Ended Queue, Priority Queue.			Commented [a32]: added
II	Trees	Introduction to Trees: Terminology, Types of Binary trees.	07	CO1,	
		Non recursive Preorder, in-order and post-order traversal. Creation of binary trees from the traversal of binary trees. Binary search tree: Traversal, searching, insertion and deletion		CO 2	
		in binary search tree. Threaded Binary Tree: Finding in-order successor and predecessor of a node in threaded tree. Insertion and deletion in threaded binary tree.			
		AVL Tree: Searching and traversing in AVL trees. Tree Rotations: Right Rotation, Left Rotation. Insertion and Deletion in an AVL Tree. B-tree: Searching, Insertion, Deletion from leaf node and non-			
		leaf node. B+ Tree, Digital Search Tree, Game Tree & Decision Tree			
III	Graphs	Self-learning Topics: Implementation of AVL and B+ Tree Introduction to Graphs: Undirected Graph, Directed Graph, graph terminology, Connectivity in Undirected and Directed Graphs. Spanning tree.	05	CO1, CO3	Commented [a33]: added
		Representation of graph: adjacency matrix, adjacency list, Transitive closure of a directed graph and path matrix.			

IV		Traversals: Breadth First Search, Depth First Search.		'	
IV		Self-learning Topics: Implementation of BFS, DFS			Commented [a34]: added
	Recursion and Storage Management	Recursion: Writing a recursive function, Flow of control in recursive functions, Winding and unwinding phase, Recursive data structures, Implementation of recursion. Tail recursion. Indirect and Direct Recursion. Storage Management: Sequential Fit Methods: First Fit, Best Fit and Worst Fit methods. Fragmentation, Freeing Memory, Boundary Tag Method. Buddy Systems: Binary Buddy System, Fibonacci Buddy System. Compaction, Garbage Collection. Self-learning Topics: Implementation of recursion function.	06	CO5	Commented [a35]: added
	Searching and Sorting	Searching: Sequential Search, Binary Search. Hashing: Hash Functions: Truncation, Mid-square Method, Folding Method, Division Method. Collision Resolution: Open Addressing: Linear Probing, Quadratic Probing, Double Hashing, Separate Chaining Bucket Hashing. Analysis of all searching techniques Sorting: Insertion sort, Selection sort, Merge sort, Quick sort and Radix sort. Analysis of all sorting techniques Self-learning Topics: Implementation of different sorting techniques and searching.	05	CO 4, CO5	Commented [a36]: added
VI	Applications of Data Structures	techniques and searching. Applications of Linked Lists: Addition of 2 Polynomials and Multiplication of 2 polynomials. Applications of Stacks: Reversal of a String, Checking validity of an expression containing nested parenthesis, Function calls, Polish Notation: Introduction to infix, prefix and postfix expressions and their evaluation and conversions. Application of Queues: Scheduling, Round Robin Scheduling Applications of Trees: Huffman Tree and Heap Sort. Applications of Graphs: Dijkstra's Algorithm, Minimum Spanning Tree: Prim's Algorithm, Kruskal's Algorithm. Self-learning Topics: Implementation of applications for Stack, Queues, Linked List, Trees and Graph.	06	CO6	

S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
 Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.
 Reema Thareja; Data Structures using C; Oxford.

References:

- 1. Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
- 2. Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.
- 3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://opendatastructures.org/
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC303	Database Management System	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Teet1	Test 2	4.1.0	Sem.	Term work		Total	
		Test1	Test 2	Avg.	Exam				
ITC303	Database Management System	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives						
The cour	se aims:						
1	To learn the basics and understand the need of database management system.						
2	To construct conceptual data model for real world applications						
3	To Build Relational Model from ER/EER.						
4	To introduce the concept of SQL to store and retrieve data efficiently.						
5	To demonstrate notions of normalization for database design.						
6	To understand the concepts of transaction processing- concurrency control & recovery procedures.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Identify the need of Database Management System.	L4
2	Design conceptual model for real life applications.	L6
3	Create Relational Model for real life applications	L6
4	Formulate query using SQL commands.	L5
5	Apply the concept of normalization to relational database design.	L3
6	Understand the concept of transaction, concurrency and recovery.	L1, L2

Prerequisite: C Programming

Sr. No.	ILED SYLLABUS: Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Comment Basic knowledge of operating systems and file systems, Any programming	02	
I	Database System Concepts and Architecture	Introduction, Characteristics of Databases, File system v/s Database system, Data abstraction and Data Independence, DBMS system architecture, Database Administrator (DBA), Role of DBA Self-learning Topics: Identify the types of Databases.	05	CO1
II	The Entity- Relationship Model	Conceptual Modeling of a database, The Entity- Relationship (ER) Model, Entity Type, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Weak entity Types Generalization, Specialization and Aggregation, Extended Entity-Relationship (EER) Model. Self-learning Topics: Design an ER model for any real time case study.	05	CO2
Ш	Relational Model & Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for Unary Relational Operations, • Set Theory operations, • Binary Relational operation Relational Algebra Queries Self-learning Topics: Map the ER model designed in module II to relational schema	05	CO3
IV	Structured Query Language (SQL) & Indexing	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries ; Integrity constraints in SQL. Database Programming with JDBC, Security and authorization: Grant & Revoke in SQL Functions and Procedures in SQL and cursors. Indexing: Basic Concepts, Ordered Indices, Index Definition in SQL Self-learning Topics: Physical design of database for the relational model designed in module III and fire various queries.	08	CO4

V	Relational	Design guidelines for relational Schema,	07	CO5
	Database Design	Functional Dependencies, Database tables and	1	
		normalization, The need for normalization, The	l.	
		normalization process, Improving the design,	1	
		Definition of Normal Forms- 1NF, 2NF, 3NF &	i.	
		The Boyce-Codd Normal Form (BCNF).	1	
		Self-learning Topics: Consider any real time		
		application and normalization upto 3NF/BCNF		
VI	Transactions	Transaction:	07	CO6
	Management and	Transaction concept, State Diagram, ACID	l.	
	Concurrency and	Properties, Transaction Control Commands,	1	
	Recovery	Concurrent Executions, Serializability – Conflict	1	
		and View,	1	
		Concurrency Control:	1	
		Lock-based-protocols, Deadlock handling	1	
		Timestamp-based protocols,	1	
		Recovery System:	1	
		Recovery Concepts, Log based recovery.	1	
		Self-learning Topics: Study the various deadlock	1	
		situation which may occur for a database designed	1	
'ovt R		in module V.		

1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill

2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education

3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

 Peter Rob and Carlos Coronel, — Database Systems Design, Implementation and Managementl, Thomson Learning, 9th Edition.

2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press

3. G. K. Gupta : "Database Management Systems", McGraw - Hill

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.oreilly.com
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC304	Principle of Communicati on	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks							
			Internal assessment			Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Flact. /Olai	Total	
ITC304	Principle of Communicatio n	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives								
The cour	se aims:								
1	Study the basic of Analog and Digital Communication Systems.								
2	Describe the concept of Noise and Fourier Transform for analyzing communication systems.								
3	Acquire the knowledge of different modulation techniques such as AM, FM and study the block diagram of transmitter and receiver.								
4	Study the Sampling theorem and Pulse Analog and digital modulation techniques								
5	Learn the concept of multiplexing and digital band pass modulation techniques								
6	Gain the core idea of electromagnetic radiation and propagation of waves.								

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	ccessful completion, of course, learner/student will be able to:	
1	Describe analog and digital communication systems	L1
2	Differentiate types of noise, analyses the Fourier transform of time and frequency domain.	L1, L2, L3, L4
3	Design transmitter and receiver of AM, DSB, SSB and FM.	L2,L3
4	Describe Sampling theorem and pulse modulation systems.	L1
5	Explain multiplexing and digital band pass modulation techniques.	L1, L2
6	Describe electromagnetic radiation and propagation of waves.	L1

Prerequisite: Basic of electrical engineering

Sr. No.	Module	Detailed Content	Hours	CO Mapping	
0	Prerequisite	Terminologies in communication systems, analog and digital electronics	02		
I	Introduction	Basics of analog communication and digital communication systems (Block diagram), Electromagnetic Spectrum and application, Types of Communication channels. Self-learning Topics: Difference between Analog and Digital Communication. List the examples.	03	CO1	
п	Noise and Fourier Representation of Signal and System	Basics of signal representation and analyses, Introduction to Fourier Transform, its properties (time and frequency shifting, Fourier transform of unit step, delta and gate function. Types of Noise, Noise parameters –Signal to noise ratio, Noise factor, Noise figure, Friss formula and Equivalent noise temperature. Self-learning Topics: Practice Numerical on above topic.	06	CO2	
III	Amplitude and Angle modulation Techniques.	Need for modulation, Amplitude Modulation Techniques: DSBFC AM,DSBSC-AM, SSB SC AM- block diagram spectrum, waveforms, bandwidth, Power calculations. Generation of AM using Diode, generation of DSB using Balanced modulator, Generation of SSB using Phase Shift Method. AM Transmitter (Block Diagram) AM Receivers – Block diagram of TRF receivers and Super heterodyne receiver and its characteristics- Sensitivity, Selectivity, Fidelity, Image frequency and its rejection and double spotting Angle Modulation FM: Principle of FM- waveforms, spectrum, bandwidth. Pre- emphasis and de-emphasis in FM, FM generation: Direct method –Varactor diode Modulator, Indirect method (Armstrong method) block diagram and waveforms. FM demodulator: Foster Seeley discriminator, Ratio detector. Self-learning Topics: Define AM and FM. Differentiate between FM and AM. List examples of FM and AM.	12	C01, C02, C03	
IV	Pulse Analog Modulation and Digital Modulation	Sampling theorem for low pass and band pass signals with proof, Anti- aliasing filter, PAM, PWM and PPM generation and Degeneration. Quantization process, Pulse code modulation, Delta modulation, Adaptive delta modulation.	08	CO1, CO2, CO4	

V	Multiplexing and Digital Band Pass	Introduction to Line Codes and ISI. Self-learning Topics: Implementation of Pulse code modulation and demodulation. Principle of Time Division Multiplexing, Frequency Division Multiplexing , Orthogonal Frequency	04	CO1, CO2,
	Modulation Techniques	Division Multiplexing and its applications .ASK, FSK, PSK QPSK Generation and detection. Self-learning Topics: Implement TDM, FDM, OFDM.		CO5
VI	Radiation and Propagation of Waves	Electromagnetic radiation, fundamentals, types of propagation, ground wave, sky wave, space wave tropospheric scatter propagation Self-learning Topics: List the real time examples for different types of propagation waves.	04	CO6

[1]. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed

[2]. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.

[3]. Wireless Communication and Networking, Vijay Garg

References:

[1]. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.

[2]. B P Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University

[3]. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.

[4]. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.classcentral.com
3.	http://www.vlab.co.in/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)

A total of four questions need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC305	Paradigms and Computer Programming Fundamentals	03			03			03

Course	Course Name	Examination Scheme								
Code		Theory Marks								
		Internal assessment			End	T W	Denset (Orel	Tatal		
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Pract. /Oral	Total		
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80			100		

Course Objectives:

Sr. No.	Course Objectives
The cour	se aims:
1	To introduce various programming paradigms and the basic constructs that underline any programming language.
2	To understand data abstraction and object orientation.
3	To introduce the basic concepts of declarative programming paradigms through functional and logic programming.
4	To design solutions using declarative programming paradigms through functional and logic programming.
5	To introduce the concepts of concurrent program execution.
6	To understand use of scripting language for different problem domains.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Understand and Compare different programming paradigms.	L1, L2
2	Understand the Object Oriented Constructs and use them in program design.	L1, L2
3	Understand the concepts of declarative programming paradigms through functional and logic programming.	L1, L2
4	Design and Develop programs based on declarative programming paradigm using functional and/or logic programming.	L5, L6
5	Understand role of concurrency in parallel and distributed programming.	L1, L2
6	Understand different application domains for use of scripting languages.	L1. L2

Prerequisite: Students must have learned C Programming (FEC205 and FEL204),

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Compilation and interpretation, Focus on overview of compilation steps.	02	CO1
Ι	Introduction to Programming Paradigms and Core Language Design Issues	Introduction to different programming paradigms. Names, Scopes, and Bindings, Scope Rules, Storage Management. Type Systems, Type Checking, Equality Testing and Assignment. Subroutine and Control Abstraction: Stack Layout, Calling sequence, parameter passing Generic subroutines and modules. Exception handling, Co-routines and Events. Self-learning Topics: Implementation of basic concerts using compared basic	10	CO1
II	Imperative Paradigm: Data Abstraction in Object Orientation	concepts using any programming language. Grouping of data and Operations- Encapsulation, Overloading, Polymorphism, Inheritance, Initialization and Finalization, Dynamic Binding. Self-learning Topics: Implementation of OOP concepts using OOP language.	05	CO2
III	Declarative Programming Paradigm: Functional Programming	Introduction to Lambda Calculus, Functional Programming Concepts, Evaluation order, Higher order functions, I/O- Streams and Monads. Self-learning Topics: Implementation of I/O using any programming language.	07	CO3, CO4
IV	Declarative Programming Paradigm: Logic	Logic Programming with PROLOG - Resolution and Unification, Lists, Arithmetic execution order,	06	CO3, CO4

	Programming	imperative control flow, database manipulation, PROLOG facilities and deficiencies		
		Self-learning Topics: Implementation of basic operation and control flow using PROLOG in healthcare.		
V	Alternative Paradigms: Concurrency	Concurrent Programming Fundamentals, Implementing synchronisation, Message Passing - Background and Motivation, Multi threaded programs, Communication and Synchronization, Language and Libraries, Thread creation Syntax	04	CO5
		Self-learning Topics: Implementation of module IV concepts for real time application.		
VI	Alternative Paradigms: Scripting Languages	Common characteristics, Different Problem domains for using scripting, Use of scripting in Web development–server and clients side scripting, Innovative features of scripting languages - Names and Scopes, string and pattern manipulation ,data types ,object orientation.	05	CO6
		Self-learning Topics: Implement a simple website for client-server.		

- 1. Scott M L, Programming Language Pragmatics, 3rd Edn., Morgan Kaufmann Publishers, 2009
- 2. Programming Languages: Concepts and Constructs; 2nd Edition, Ravi Sethi, Pearson Education Asia, 1996.

References:

- Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition) (February 2, 2016)
- Programming Languages: Design and Implementation (4th Edition), by Terrence W. Pratt, Marvin V. Zelkowitz, Pearson, 2000

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.classcentral.com
3.	https://www.udemy.com

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)

A total of **four questions** need to be answered

Lab Code	Lab Name	Teaching SchemeCredits Assi(Contact Hours)			Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC301	Data Structure Lab		02			01		01

Lab Code	Lab Name	Examination Scheme						
			Theo	ry Marks				
		Inte	Internal assessment			Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Place. /Olai	Totai
ITC301	Data Structure Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives						
The Lab	experiments aims:						
1	To use data structures as the introductory foundation for computer automation to engineering problems.						
2	To use the basic principles of programming as applied to complex data structures.						
3	To learn the principles of stack, queue, linked lists and its various operations.						
4	To learn fundamentals of binary search tree, implementation and use of advanced tree like AVL, B trees and graphs.						
5	To learn about searching, hashing and sorting.						
6	To learn the applications of linked lists, stacks, queues, trees and graphs.						

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Understand and use the basic concepts and principles of various linked lists, stacks and queues.	L1, L2, L3
2	Understand the concepts and apply the methods in basic trees.	L1, L2
3	Use and identify the methods in advanced trees.	L3, L4
4	Understand the concepts and apply the methods in graphs.	L2, L3
5	Understand the concepts and apply the techniques of searching, hashing and sorting	L2, L3
6	Illustrate and examine the methods of linked lists, stacks, queues, trees and graphs to various real time problems	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:			
PC i3 processor and above	Turbo/Borland C complier			

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language.	02	
I	Stacks, Queues and Linked Lists	 Array Implementation of Stack and Queue. Insertion, deletion operations with Singly linked lists Insertion, deletion operations Doubly linked lists Insertion, deletion operations Circular linked lists. Reversing a singly linked list. * Linked List implementation of Stack and Queue 		LO 1
II	Trees	 * Implementation of operations (insertion, deletion, counting of nodes, counting of leaf nodes etc.) in a binary search tree. Implementation of insertion, deletion and traversal for fully in-threaded binary search tree. 	04	LO 2
III	Advanced Trees	 * Implementation of AVL tree. Implementation of operations in a B tree. 	04	LO 3
IV	Graphs	 Implementation of adjacency matrix creation. Implementation of addition and deletion of edges in a directed graph using adjacency matrix. Implementation of insertion and deletion of vertices and edges in a directed graph using adjacency list. 	04	LO 4
V	Searching and Sorting	 Implementation of Heap Sort Implementation of Binary Search. Implementation of Selection sort, Bubble sort, Insertion sort, Quick sort 	04	LO 5

VI	Applications of Data Structures	• * Implementation of infix to postfix conversion and evaluation of postfix expression	04	LO 6
		• * Implementation of Josephus Problem using circular linked list		
		• * Implementation of traversal of a directed graph through BFS and DFS.		
		• Implementation of finding shortest distances using Dijkstra's algorithm		
		• *Implementation of hashing functions with different collision resolution techniques		

1. S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.

2. Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.

3. Reema Thareja; Data Structures using C; Oxford.

References:

Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
 Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.

3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme Credits Assigned (Contact Hours)						
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC302	SQL Lab		02			01		01

Lab Code	Lab Name		Examination Scheme							
			Theo	ry Marks						
		Inte	rnal asse	ssment	End	Torm Work	Pract. /Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Plact. /Olai	Total		
ITC302	SQL Lab					25	25	50		

Lab Objectives:

Sr. No.	Lab Objectives
The Lab	experiments aims:
1	To identify and define problem statements for real life applications
2	To construct conceptual data model for real life applications
3	To Build Relational Model from ER/EER and demonstrate usage of relational algebra.
4	To Apply SQL to store and retrieve data efficiently
5	To implement database connectivity using JDBC
6	To understand the concepts of transaction processing- concurrency control & recovery procedures.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Define problem statement and Construct the conceptual model for real life application.	L1, L3, L4, L6
2	Create and populate a RDBMS using SQL.	L3, L4
3	Formulate and write SQL queries for efficient information retrieval	L3, L4
4	Apply view, triggers and procedures to demonstrate specific event handling.	L1, L3, L4
5	Demonstrate database connectivity using JDBC.	L3
6	Demonstrate the concept of concurrent transactions.	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Any SQL Compiler, Java Programming Language

DETAILED SYLLABUS:

Sr. No.	Detailed Content	Hours	LO Mapping
Ι	Identify real world problem and develop the problem statement. Design an Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.	02	LO1
II	Mapping ER/EER to Relational schema model.	02	LO1
III	Create a database using DDL and apply integrity constraints.	02	LO2, LO3
IV	Perform data manipulations operations on populated database.	02	LO3
V	Perform Authorization using Grant and Revoke.	02	LO2, LO3
VI	Implement Basic and complex SQL queries.	02	LO3, LO4
VII	Implementation of Views and Triggers.	02	LO4
VII I	Demonstrate database connectivity using JDBC.	02	LO5
IX	Execute TCL commands.	02	LO4
Х	Implement functions and procedures in SQL	02	LO3, LO4
XI	Implementation of Cursor.	02	LO3, LO4
XII	Implementation and demonstration of Transaction and Concurrency control techniques using locks.	02	LO6

 Text Books:

 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill

 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education

 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

- References: 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Managementl, Thomson Learning, 9th Edition.
- 2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press

3. G. K. Gupta : "Database Management Systems", McGraw - Hill

Term Work:

Term Work shall consist of at least 10 Practicals based on the above list, but not limited to. Also, Term work Journal must include at least 2 assignments:

The first assignment may be based on: Relational Algebra and Second may be based on Transactions

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC303	Computer programming Paradigms Lab		02			01		01

Lab Code	Dela Lab Name Examination Scheme							
		Theory Marks						
		Inte	Internal assessment		End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract. /Orai	Total
ITC303	Computer programming Paradigms Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives						
The Lab	experiments aims:						
1	Understand data abstraction and object orientation						
2	Design and implement declarative programs in functional and logic programming languages						
3	Introduce the concepts of concurrent program execution						
4	Understand run time program management						
5	Understand how to implement a programming solution using different programming paradigms						
6	Learn to compare implementation in different programming paradigms.						

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Apply Object Oriented concepts in C++.	L1, L2, L3
2	Design and Develop solution based on declarative programming paradigm using functional and logic programming.	L6
3	Understand the multithreaded programs in Java and C++	L1, L2
4	Understand the need and use of exception handling and garbage collection in C++ and JAVA	L2, L3
5	Design and Develop a solution to the same problem using multiple paradigms.	L6
6	Compare the implementations in multiple paradigms at coding and execution level	L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Any SQL Compiler, Java Programming Language

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Demonstrate Compilation and interpretation stages to students for C, C++, JAVA along with how to debug the code.	02	
I	Imperative Paradigm: Data Abstraction in Object Orientation	At least two Programming Implementations Preferably in C++ to demonstrate concepts like - Encapsulation, Inheritance, Initialization and Finalization, Dynamic Binding.	05	LO1
П	Declarative Programming Paradigm: Functional Programming	 Tutorial Introduction to programming environment chosen. Implement at least five Programs in functional programming language preferably LISP dialect like Racket, Haskel. To demonstrate use of functional programming for problem solving Students should clearly understand the syntax and the execution of the Functional Implementation. 	06	LO2

III	Declarative Programming	 Tutorial Introduction to SWI Prolog Implement at least five Prolog programs to 	05	LO2
	Paradigm: Logic Programming	understand declarative programming concepts.		
	Tiogramming	Students should clearly understand the syntax and the execution of the Prolog code Implementation.		
IV	Alternative Paradigms: Concurrency	At least two Programs preferably in c++ and java to demonstrate Thread management and synchronization	02	LO4
V	Run Time Program Management	A Program to understand Exception handling and Garbage collection, preferably in C++ and JAVA Students should underline the syntactic differences in the solutions in both Object Oriented Languages.	02	LO4
VI	Programming Assignment For comparative study of Different Paradigms	At Least two implementations each implemented on multiple paradigms like procedural, object oriented, functional, logic. The implementations should be done in a group of two/three students with appropriate difficulty level. Student should present the solution code and demonstrate execution for alternative solutions they build.	04	LO5, LO6

- 1. Scott M.L., Programming Language Pragmatics 3rd Ed, Morgan Kaufman Publishers.
- 2. Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition)

References:

1. Sethi R, Programming Languages Concepts and Constructs, 2nd Ed, Pearson Education

Online Reference:

- 1. University Stuttgart Germany Lab Course on Programming Paradigms <u>http://software-lab.org/teaching/winter2019/pp/</u>
- 2. Course at MIT Structure and Interpretation of Computer Programs [2019] https://web.mit.edu/u/6.037/

List of Experiments:

Faculty teaching the subject must design appropriate tutorials and Experiments as mentioned in every module of syllabus. There must be at least 15 experiments, 03 Tutorials and 01 Write up for Module VI Programming Assignment conducted as part of the laboratory.

Term Work:

Term Work shall consist of at least 15 Practical's and tutorials based on the above modules, but not limited to. Also, Term work Journal must include at least 2 assignments/tutorial and 01 write up as mentioned above.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Teaching Scheme (Contact Hours)			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC304	Java Lab (SBL)		04			02		02

Lab Code	Lab Name				Examina	ation Scheme			
			Theo	ry Marks					
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Proof /Orol	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work		Totai	
ITC304	Java Lab (SBL)					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives				
The Lab	The Lab experiments aims:				
1	To understand the concepts of object-oriented paradigm in the Java programming language.				
2	To understand the importance of Classes & objects along with constructors, Arrays ,Strings and vectors				
3	To learn the principles of inheritance, interface and packages and demonstrate the concept of reusability for faster development.				
4	To recognize usage of Exception Handling, Multithreading, Input Output streams in various applications				
5	To learn designing, implementing, testing, and debugging graphical user interfaces in Java using Swings and AWT components that can react to different user events.				
6	To develop graphical user interfaces using JavaFX controls.				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Explain the fundamental concepts of Java Programing.	L1, L2
2	Use the concepts of classes, objects, members of a class and the relationships among them needed for a finding the solution to specific problem.	L3
3	Demonstrate how to extend java classes and achieve reusability using Inheritance, Interface and Packages.	L3
4	Construct robust and faster programmed solutions to problems using concept of Multithreading, exceptions and file handling	L3
5	Design and develop Graphical User Interface using Abstract Window Toolkit and Swings along with response to the events.	L6

6	Develop Graphical User Interface by exploring JavaFX framework based on MVC	L6
	architecture.	

Prerequisite: Basics of Computer Programming

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With Following	1. Windows or Linux Desktop OS	1. Internet Connection for
Configuration	2. JDK 1.8 or higher	installing additional packages if
1. Intel PIV Processor	3. Notepad ++	required
2. 2 GB RAM	4.JAVA IDEs like Netbeans or	
3. 500 GB Harddisk	Eclipse	
4. Network interface card		

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basics of Computer Programming.	02	-
Ι	Java Fundamentals	 Overview of procedure and object oriented Programming, Java Designing Goals and Features of Java Language. Introduction to the principles of object-oriented programming: Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism. Keywords, Data types, Variables, Operators, Expressions, Types of variables and methods. Control Statements: If Statement, If-else, Nested if, switch Statement, break, continue. Iteration Statements: for loop, while loop, and do- while loop (Perform any 2 programs that covers Classes, Methods, Control structures and Looping statements) 1) Implement a java program to calculate gross salary & net salary taking the following data. Input: empno, empname, basic Process: DA=70% of basic CCA=Rs240/- PF=10% of basic PT= Rs100/- 2) Five Bikers Compete in a race such that they drive at a constant speed which may or may not be the same as the other. To qualify the race, the speed of a racer must be more than the average speed of all 5 racers. Write a Java program to take as input the speed of each racer and print back the speed of qualifying racers. 3) Write a Java program that prints all real solutions to the quadratic equation ax²+bx+c = 0. Read in a, b, c and use the quadratic formula. If the discriminate b²-4ac is 	07	LOI

		negative, display a message stating that there are no real solutions? 4) Write a Menu driven program in java to implement simple banking application. Application should read the customer name, account number, initial balance, rate of interest, contact number and address field etc. Application should have following methods. 1. createAccount() 2. deposit() 3. withdraw() 4. computeInterest() 5. displayBalance() 5)Write a menu driven Java program which will read a number and should implement the following methods 1. factorial() 2. testArmstrong() 3. testPalindrome() 4. testPrime() 5. fibonacciSeries() 6) Create a Java based application to perform various wavs of Method overloading		
П	Classes, objects, Arrays and Strings	 ways of Method overloading. Classes & Objects: Reference Variables, Passing parameters to Methods and Returning parameters from the methods, Static members, Non-Static members Nested and Inner Classes. Static Initialization Block(SIB), Instance Initialization Block(IIB) Constructors: Parameterized Constructors, chaining of constructors Parameterized Constructors, chaining of constructors Overloading. Recursion, Command-Line Arguments. Wrapper classes, InputBufferReader, OutputBufferReader, String Buffer classes, String functions. Arrays & Vectors: One and Two Dimensional arrays, Irregular arrays, dynamic arrays, Array List and Array of Object. (Perform any 3 programs that covers Classes & objects, Constructors, Command Line Arguments, Arrays/Vectors,String function and recursions). Experiments: 1) Write a program that would print the information 	07	LO1 LO2
		 Write a program that would print the information (name, year of joining, salary, address) of three employees by creating a class named 'Employee'. The output should be as follows: Name Year of joining Address Robert 1994 64C- WallsStreat Sam 2000 68D- WallsStreat John 1999 26B- WallsStreat Write a program to print the area of a rectangle by creating a class named 'Area' having two methods. First method named as 'setDim' takes length and breadth of rectangle as parameters and the second method named 		

	 as 'getArea' returns the area of the rectangle. Length and breadth of rectangle are entered through keyboard. 3) Write a Java program to illustrate Constructor Chaining. 4) Create a class 'Student' with three data members which are name, age and address. The constructor of the class assigns default values name as "unknown", age as '0' and address as "not available". It has two members with the same name 'setInfo'. First method has two parameters for name and age and assigns the same whereas the second method takes has three parameters which are assigned to name, age and address of 10 students. Hint - Use array of objects. 5) Write a java programs to add n strings in a vector array. Input new string and check whether it is present in the vector. If it is present delete it otherwise add it to the vector. 6) Print the sum, difference and product of two complex numbers by creating a class named 'Complex' with separate methods for each operation whose real and imaginary parts are entered by user. 7) Write menu driven program to implement recursive Functions for following tasks. a) To find GCD and LCM b) To print n Fibonacci numbers c) To find reverse of number d) To solve 1 +2+3+4++(n-1)+n 8) Print Reverse Array list in java by writing our own function. 		
III Inheritance, Packages and Interfaces.	 Inheritance: Inheritance Basics, Types of Inheritance in Java, member access, using Super- to call superclass Constructor, to access member of super class(variables and methods), creating multilevel hierarchy, Constructors in inheritance, method overriding, Abstract classes and methods, using final, Dynamic Method Dispatch Packages: Defining packages, creating packages and Importing and accessing packages Interfaces: Defining, implementing and extending interfaces, variables in interface, Default Method in Interface, Static Method in interface, Abstract Classes vs Interfaces. (Perform any 3 programs covering Inheritance, Interfaces and Packages). Experiments 1) Create a Teacher class and derive Professor/Associate_Professor/Assistant_Professor class from Teacher class. Define appropriate constructor for all the classes. Also define a method to display information of Teacher. Make necessary assumptions as required. 2) Create a class Book and define a display method to 	10	LO1 LO3

		 (iv) Write the main method that demonstrates polymorphism. 6) Create an interface vehicle and classes like bicycle, car, bike etc, having common functionalities and put all the common functionalities in the interface. Classes like Bicycle, Bike, car etc implement all these functionalities in their own class in their own way 7) Create a class "Amount In Words" within a user defined package to convert the amount into words. (Consider amount not to be more than 100000). 		
IV	Exception Handling, Multithreading, Input Output streams	 Exception Handling: Exception-Handling Fundamentals, Exception Types, Exception class Hierarchy, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally , Java's Built-in Exceptions, Creating Your Own Exception Subclasses Multithreaded Programming: The Java Thread Model and Thread Life Cycle, Thread Priorities, Creating a Thread, Implementing Runnable, Extending Thread, Creating Multiple Threads, Synchronization: Using Synchronized Methods, The synchronized Statement I/O Streams: Streams, Byte Streams and Character, The Predefined Streams, Reading Console Input, Reading Characters, Reading Strings, Writing Console Output, Reading and Writing Files. (Perform any 3 programs that cover Exception Handling, Multithreading and I/O Streams). Experiments: 1) Write java program where user will enter loginid and password as input. The password should be 8 digit containing one digit and one special symbol. If user enter valid password satisfying above criteria then show "Login Successful Message". If user enter invalid Password then create InvalidPasswordException stating Please enter valid password of length 8 containing one digit and one Special Symbol. 2) Java Program to Create Account with 1000 Rs Minimum Balance, Deposit Amount, Withdraw Amount and Also Throws LessBalanceException. It has a Class Called LessBalanceException Which returns the Statement that Says WithDraw Amount(_Rs) is Not Valid. It has a Class Which Creates 2 Accounts, Both Account Deposite Money and One Account Tries to WithDraw more Money Which Generates a LessBalanceException Take Appropriate Action for the Same. 3) Create two threads such that one thread will print even number and another will print odd number in an ordered fashion. 	10	LO1 LO3 LO4

				1
		 4) Assume that two brothers, Joe and John, share a common bank account. They both can, independently, read the balance, make a deposit, and withdraw some money. Implement java application demonstrate how the transaction in a bank can be carried out concurrently. 5) You have been given the list of the names of the files in a directory. You have to select Java files from them. A file is a Java file if it's name ends with ".java". For e.g. File- "Names.java" is a Java file, "FileNames.java, add.java, factorial.java, sum.txt Output: tset.java, add.java, factorial.java 		
V	GUI programming- I (AWT, Event Handling, Swing)	Designing Graphical User Interfaces in Java : Components and Containers, Basics of Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI Features	12	LO1 LO4 LO5
		Event-Driven Programming in Java : Event-Handling Process, Event-Handling Mechanism, Delegation Modelof Event Handling, Event Classes, Event Sources, Event Listeners, Adapter Classes as Helper Classes in Event Handling.		
		Introducing Swing: AWT vs Swings, Components and Containers, Swing Packages, A Simple Swing Application, Painting in Swing, Designing Swing GUI Application using Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, TablesScroll pane Menus and Toolbar		
		(Perform any 3 programs that contain AWT, Event handling and Swing to build GUI application).		
		1)Write a Java program to implement Swing components namely Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, Tables Scroll pane Menus and Toolbars to design interactive GUI.		
		2) Write a program to create a window with four text fields for the name, street, city and pincode with suitable labels. Also windows contains a button MyInfo. When the user types the name, his street, city and pincode and then clicks the button, the types details must appear in Arial Font with Size 32, Italics.		
		3) Write a Java program to create a simple calculator using java AWT elements. .Use a grid layout to arrange buttons for the digits and basic operation +, -, /, *. Add a text felid to display the results.		

		 4) Write a Java Program to create a Student Profile form using AWT controls. 5) Write a Java Program to simulate traffic signal light using AWT and Swing Components. 6) Write a Java Program to create a color palette. Declare a grid of Buttons to set the color names. Change the background color by clicking on the color button. 7) Build a GUI program that allows the user to add objects to a collection and perform search and sort on that collection.(Hint. Use Swing components like JButton, JList, JFrame, JPanel and JOptionPane.) 		
VI	GUI Programming-II (JavaFX)	JavaFX Basic Concepts, JavaFX application skeleton, Compiling and running JavaFX program,Simple JavaFX control:Label,Using Buttons and events, Drawing directly on Canvas. (Perform any one program that contains the concept of JavaFX). 1)Write a Java program to design a Login Form using JavaFX Controls. 2)Write Java program to draw various shapes on Canvas using JavaFX.	04	LO1 LO5 LO6

- 1. Herbert Schildt, "Java-The Complete Reference", Tenth Edition, Oracle Press, Tata McGraw Hill Education.
- 2. E. Balguruswamy, "Programming with Java A primer", Fifth edition, Tata McGraw Hill Publication
- 3. Anita Seth, B.L.Juneja, "Java One Step Ahead", oxford university press.

References:

- 1. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press.
- 2. Learn to Master Java by Star EDU Solutions
- 3. Yashvant Kanetkar, "Let Us Java", 4th Edition, BPB Publications.

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITM301	Mini Project – 1 A for Front end		04			02		02

/backend		
Application		
using JAVA		

Course	Course	Examination Scheme								
Code	Name	Theory Marks								
		Internal assessment			End	Term Work	Pract. /Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam	Term work	Plact. /Olai	Totai		
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA					25		25		

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problems in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly
 activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty may give inputs during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.

Guidelines for Assessment of Mini Project: Term Work

- The review/ progress monitoring committee shall be constituted by Head of Departments of each institute. The progress of Mini-Project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
 - Distribution of Term work marks for both semester shall be as below;
 - Marks awarded by guide/supervisor based on log book : 10
 - Marks awarded by review committee : 10
 - Quality of Project report

In Odd semester:

• In this semester students shall present a seminar on Mini project and demonstrate their understanding of need/problem.

: 05

- Term work shall be assessed by review/progress monitoring committee appointed by the Head of the Department/Institute of respective Programme.
- In this semester entire theoretical solution shall be ready, including components/system selection and cost analysis.

Mini Project A shall be assessed based on following points

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact

In Even semester:

- In this semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
- First review is based on readiness of building working prototype to be conducted.
- Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.
- Term work shall be assessed by review/progress monitoring committee appointed by the Head of the Department/Institute of respective Programme.

Mini Project B shall be assessed based on following points

- 1. Innovativeness
- 2. Cost effectiveness and Societal impact
- 3. Full functioning of working model as per stated requirements
- 4. Effective use of skill sets
- 5. Effective use of standard engineering norms
- 6. Contribution of an individual's as member or leader
- 7. Clarity in written and oral communication

Guidelines for Assessment of Mini Project Practical/Oral Examination in Even semester:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners approved by the University of Mumbai
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

1. Quality of problem and Clarity

- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

		Teaching Scheme		
Course			Credits Assigned	
Code	Course Name	(Contact Hours)		

		Theory	Prac t.	Tut.	Theory	TW/Pract	Tut.	Total
ITC401	Engineering Mathematics-IV	03	-	01	03	-	01	04

				Exa Sch heory	n				
Course Code	Course Name	Inter Test1	nal Ass Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total
ITC401	Engineering Mathematics-IV	20	20	20	80	25	-	-	125

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution.

Course Objectives:

Sr. No.	Course Objectives						
The cour	se aims:						
1	Matrix algebra to understand engineering problems						
2	Line and Contour integrals and expansion of a complex valued function in a power series.						
3	Z-Transforms and Inverse Z-Transforms with its properties.						
4	The concepts of probability distributions and sampling theory for small samples.						
5	Linear and Non-linear programming problems of optimization.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy				
On succ	On successful completion, of course, learner/student will be able to:					
1	Apply the concepts of eigenvalues and eigenvectors in engineering problems.	L1, L2, L3				

2	Use the concepts of Complex Integration for evaluating integrals, computing	L3
	residues & evaluate various contour integrals.	
3	Apply the concept of Z- transformation and inverse in engineering problems.	L1, L2, L3
4	Use the concept of probability distribution and sampling theory to	L3
	engineering problems.	
5	Apply the concept of Linear Programming Problems to optimization.	L1, L2, L3
6	Solve Non-Linear Programming Problems for optimization of engineering	L3
	problems.	

Module	Detailed Contents	Hours	CO Mapping
01	 Module: Linear Algebra (Theory of Matrices) 1.1 Characteristic Equation, Eigenvalues and Eigenvectors, and properties (without proof) 1.2 Cayley-Hamilton Theorem (without proof), verification and reduction of higher degree polynomials 1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices Self-learning Topics: Derogatory and non-derogatory matrices, Functions of 	6	CO1
02	 Square Matrix, Linear Transformations, Quadratic forms. Module: Complex Integration Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof). Taylor's and Laurent's series (without proof). Definition of Singularity, Zeroes, poles of <i>f</i>(<i>z</i>), Residues, Cauchy's Residue Theorem (without proof) Self-learning Topics: Application of Residue Theorem to evaluate real 		CO2
	 integrations. Module: Z Transform 3.1 Definition and Region of Convergence, Transform of Standard Functions: {kⁿa^k}, {a^k}, {^{k+n}_nC. a^k}, {c^ksin(ak + β)}, {c^ksinh ak}, {c^k cosh ak}. 3.2 Properties of Z Transform: Change of Scale, Shifting Property, Multiplication, and Division by k, Convolution theorem. 3.3 Inverse Z transform: Partial Fraction Method, Convolution Method. Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion 	5	CO3

	Module: Probability Distribution and Sampling Theory		
	4.1 Probability Distribution: Poisson and Normal distribution		
	4.2 Sampling distribution, Test of Hypothesis, Level of Significance,		
	Critical		
	region, One-tailed, and two-tailed test, Degree of freedom.		004
04	4.3 Students' t-distribution (Small sample). Test the significance of mean	6	CO4
-	and		
	Difference between the means of two samples. Chi-Square Test: Test of		
	goodness of fit and independence of attributes, Contingency table.		
	Self-learning Topics: Test significance for Large samples, Estimate		
	parameters of a population, Yate's Correction.		
	Module: Linear Programming Problems		
	5.1 Types of solutions, Standard and Canonical of LPP, Basic and Feasible		
	solutions, slack variables, surplus variables, Simplex method.		CO5
05	5.2 Artificial variables, Big-M method (Method of penalty)	6	COS
05	5.3 Duality, Dual of LPP and Dual Simplex Method	0	
	Self-learning Topics: Sensitivity Analysis, Two-Phase Simplex Method,		
	Revised Simplex Method.		
	Module: Nonlinear Programming Problems		
	6.1 NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers		
	6.2 NLPP with two equality constraints		
06	6.3 NLPP with inequality constraint: Kuhn-Tucker conditions	6	CO6
	Self-learning Topics: Problems with two inequality constraints,		
	Unconstrained optimization: One-dimensional search method (Golden		
	Search method, Newton's method). Gradient Search method		

References:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.
- 2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa.
- 3. Complex Variables and Applications, Brown and Churchill, McGraw-Hill Education.
- 4. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill Education.
- 5. Operations Research: An Introduction, Hamdy A Taha, Pearson.
- 6. Engineering Optimization: Theory and Practice, S.S Rao, Wiley-Blackwell.
- 7. Operations Research, Hira and Gupta, S. Chand Publication.

Term Work:

General Instructions:

- 1. Batch wise tutorials have to be conducted. The number of students per batch will be as per University pattern for practicals.
- 2. Students must be encouraged to write at least 6 class tutorials on the entire syllabus.
- 3. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This will be considered as a mini project in Engineering Mathematics. This project will be graded out of 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1.	Attendance (Theory and Tutorial)	05 marks
2.	Class Tutorials on entire syllabus	10 marks
3.	Mini project	10 marks

Assessment:

Internal Assessment Test:

The assessment consists of two class tests of 20 marks each. The 1st class test (Internal Assessment I) has to be conducted when approximately 40% of the syllabus is completed. The 2nd class test has to be conducted (Internal Assessment II) when an additional 35% syllabus is completed. The duration of each test will be for one hour.

End Semester Theory Examination:

- 1. The question paper will comprise a total of 6 questions, each carrying 20 marks.
- 2. Out of the 6 questions, 4 questions have to be attempted.
- 3. Question 1, based on the entire syllabus, will have 4 sub-questions of 5 marks each and is compulsory.
- 4. Question 2 to Question 6 will have 3 sub-questions, each of 6, 6, and 8 marks, respectively.
- 5. Each sub-question in (4) will be from different modules of the syllabus.
- 6. Weightage of each module will be proportional to the number of lecture hours, as mentioned in the syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC402	Computer Network and Network Design	03			03			03

(Course	Course Name	Examination Scheme							
	Code		Theory Marks Internal assessment End							
						End	Torre Work	Pract. /Oral	Total	
			Test1	Test 2	Avg.	Sem. Exam	Term Work	Plact. /Olai	Total	
	ITC402	Computer Network and Network Design	20	20	20	80			100	

Course Objectives:

Commented [a38]: Format of course objectives

Sr. No.	Course Objectives						
The course aims:							
1	Understand the division of network functionalities into layers.						
2	Understand the types of transmission media along with data link layer concepts, design						

	issues and protocols
3	Analyze the strength and weaknesses of routing protocols and gain knowledge about IP addressing
4	Understand the data transportation, issues and related protocols for end to end delivery of data.
5	Understand the data presentation techniques used in presentation layer & client/server model in application layer protocols.
6	Design a network for an organization using networking concepts

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Describe the functionalities of each layer of the models and compare the Models.	L1
2	Categorize the types of transmission media and explain data link layer concepts, design issues and protocols.	L2, L3, L4
3	Analyze the routing protocols and assign IP address to networks.	L4
4	Explain the data transportation and session management issues and related protocols used for end to end delivery of data.	L1, L2
5	List the data presentation techniques and illustrate the client/server model in application layer protocols.	L1, L3
6	Use of networking concepts of IP address, Routing, and application services to design a network for an organization	L3

Prerequisite: PCOM

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Terminologies of communication	02	-
Ι	Introduction to Computer Networks	Uses Of Computer Networks, Network Hardware, Network Software, Protocol Layering, Reference Models: OSI, TCP/IP, Comparison of OSI & TCP/IP, Network Devices. Self-learning Topics: Identify the different devices used in Network connection. College campus	03	CO1
Π	Physical Layer & Data Link Layer	Physical layer: Guided Media, Unguided Media, Wireless Transmission: Electromagnetic Spectrum. Switching: Circuit-Switched Networks, Packet Switching, Structure Of A Switch	08	CO2

Commented [a39]: Course outcomes with bloom's level

Commented [a40]: added

		 DLL Design Issues (Services, Framing, Error Control, Flow Control), Error Detection and Correction(Hamming Code,Parity, CRC, Checksum) , Elementary Data Link protocols : Stop and Wait, Sliding Window(Go Back N, Selective Repeat), Piggybacking, HDLC Medium Access Protocols: Random Access, Controlled Access, Channelization. Ethernet Protocol: Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet. 				
I		Self-learning Topics: differentiate link layer in IOT network and Normal Network.				Commented [a41]: added
Ш	Network Layer	Network and Normal Network. Network Layer Services, Packet Switching, Network Layer Performance, IPv4 Addressing (classful and classless), Subnetting, Supernetting ,IPv4 Protocol, DHCP, Network Address Translation (NAT). Routing algorithms:Distance Vector Routing, Link state routing,Path Vector Routing. Protocols –RIP,OSPF,BGP. Next Generation IP: IPv6 Addressing,IPv6 Protocol,Transition fromIPV4 to IPV6	08	CO3		
ļ		Self-learning Topics: Study difference between				Commente de 121, 11 1
		IPV4 and IPV6. Network Class A, B, C, D, E and subnet mask.				Commented [a42]: added
IV	Transport Layer & Session Layer	TransportLayer:TransportLayerServices,Connectionless&Connection-orientedProtocols,TransportLayerprotocols:USerDatagramProtocol:UDPServices,UDPApplications,TransmissionControlProtocol:TCPServices,TCPFeatures,Segment,ATCPConnection,WindowsinTCP,FlowControl,ErrorControl,TCPCongestionControl,TCPTimers.SessionLayer:SessionLayerSession	07	CO4		
I		Layer protocol - Remote Procedure Call (RPC),				
		Self-learning Topics: List real time example of UDP and TCP.			_	Commented [a43]: added
V	Presentation Layer & Application Layer	Presentation layer :Compression: Comparison between Lossy Compression and Lossless Compression, Huffman Coding, Speech Compression, LZW, RLE, Image Compression – GIF,JPEG.	05	CO5		

		Application layer: Standard Client-Server Protocols:World Wide Web, HTTP, FTP, Electronic Mail, DomainName System (DNS), SNMPSelf-learning Topics:Difference between HTTPand FTP Protocol.			Commented [a44]: added
VI	Network Design	Introduction to VLAN, VPN	06	CO6	
	Concepts	A case study to design a network for an organization meeting the following guidelines: Networking Devices, IP addressing: Subnetting, Supernetting, Routing Protocols to be used, Services to be used: TELNET, SSH, FTP server, Web server, File server, DHCP server and DNS server. Self-learning Topics: Study the Network Design of your college campus.			Commented [a45]: added

1. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.

2. Behrouz A. Forouzan, Data Communications and Networking ,4th Edition,Mc Graw Hill education.

References:

- 1. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Education.
- B. A. Forouzan, "TCP/IP Protocol Suite", Tata McGraw Hill edition, Third Edition.
 Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill, Second Edition.
- 4. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC403	Operating System	03			03			03

Course	Course Name	Examination Scheme							
Code		Theory Marks				Pract. /Oral	Total		
		Internal assessment			End			Term Work	
		Test1	Test 2	Avg.	Sem.		Flact. /Olai	Total	
		Testi	Test 2	Avg.	Exam			L	
ITC403	Operating System	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives
The cour	se aims:
1	To understand the major components of Operating System & its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual memory.
5	To understand functions of Operating System for storage management and device management.
6	To study the need and fundamentals of special-purpose operating system with the advent of new emerging technologies.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy		
On su	ccessful completion, of course, learner/student will be able to:			
1	Understand the basic concepts related to Operating System.	L1, L2		
2	Describe the process management policies and illustrate scheduling of processes by CPU.	L1		
3	Explain and apply synchronization primitives and evaluate deadlock conditions as handled by Operating System.	L2		
4	Describe and analyze the memory allocation and management functions of Operating System.	L1		
5	Analyze and evaluate the services provided by Operating System for storage management.	L4, L5		
6	Compare the functions of various special-purpose Operating Systems.	L2		

Commented [a46]: Format of course objectives

Commented [a47]: Course outcomes with bloom's level

Prerequisite: Programming Language C

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Programming Language C; Basic of Hardware i.e. ALU, RAM, ROM, HDD, etc.; Computer- System Organization.	02	-
Ι	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot.	03	COI
		Self-learning Topics: Study of any three different OS.		
Ш	Process Management	Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms.	06	CO2
		Self-learning Topics: Study the comparison between Scheduling Algorithms.	[
III	Process Coordination	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics:Study a real time casestudy for Deadlock detection and recovery.		
IV	Memory Management	Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing.	09	CO4
		Self-learningTopics:ImplementPageReplacementAlgorithm.		
V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass- Storage Structure; Disk Structure; Disk	06	CO5

		Scheduling; RAID Structure; Introduction to I/O Systems.Self-learning Topics:Study the advantages and disadvantages of RAID.			Commented [a52]: added
VI	Special-purpose Operating Systems	Open-sourceandProprietaryOperatingSystem;FundamentalsofDistributedOperatingSystem;NetworkOperatingSystem;Embedded Operating Systems;CloudandIoTOperatingSystems;Real-TimeOperating System;Mobile Operating System;MultimediaOperating System;ComparisonbetweenFunctions of variousSpecial-purposeOperatingSystems.Self-learning Topics:Study onModule VI.	04	CO6	Commented [a53]: added

1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.

- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC404	Automata Theory	03			03			03

Co	Course	Course				Examina	ation Scheme		
	Code	Name	Theory Marks						
			Internal assessment		End	Term Work	Pract. /Oral	Total	
			Test1	Test 2	Avg.	Sem. Exam	Term work	Flact. /Ofai	Total
	ITC404	Automata Theory	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives							
The cours	se aims:							
1	To learn fundamentals of Regular and Context Free Grammars and Languages.							
2	To understand the relation between Regular Language and Finite Automata and machines.							
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.							
4	To understand the relation between Regular Languages, Contexts free Languages, PDA and TM.							
5	To learn how to design PDA as acceptor and TM as Calculators.							
6	To learn applications of Automata Theory.							

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Explain, analyze and design Regular languages, Expression and Grammars.	L2, L4, L6
2	Design different types of Finite Automata and Machines as Acceptor, Verifier and Translator.	L6
3	Analyze and design Context Free languages and Grammars.	L4, L6
4	Design different types of Push down Automata as Simple Parser.	L6
5	Design different types of Turing Machines as Acceptor, Verifier, Translator and Basic computing machine.	L6
6	Develop understanding of applications of various Automata.	L6

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

DETAILED SYLLABUS:

Commented [a54]: Format of course objectives

Commented [a55]: Course outcomes with bloom's level

Sr. No.	Module	Detailed Content	Hours	CO Mapping	
0	Prerequisite	Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.	02	-	
Ι	Introduction and Regular Languages	Languages: Alphabets and Strings. Regular Languages: Regular Expressions, Regular Languages, Regular Grammars, RL and LL grammars, Closure properties Self-learning Topics: Practice exercise on Regular Expressions. Identify the tools also.	05	CO1	Commented [a56]: added
II	Finite Automata	Finite Automata: FA as language acceptor or verifier, NFA (with and without ε), DFA, RE to NFA, NFA to DFA, Reduced DFA, NFA-DFA equivalence, FA to RE. Finite State Machines with output : Moore and Mealy machines. Moore and Mealy M/C conversion. Limitations of FA. Self-learning Topics: Practice exercise on FA and NFA	09	CO2	Commented [a57]: added
III	Context Free Grammars	Context Free Languages: CFG, Leftmost and Rightmost derivations, Ambiguity, Simplification and Normalization (CNF & GNF) and Chomsky Hierarchy (Types 0 to 3) Self-learning Topics: Practice numerical or exercise on CFG	08	CO3	Commented [a58]: added
IV	Push Down Automata	Push Down Automata: Deterministic (single stack) PDA, Equivalence between PDA and CFG. Power and Limitations of PDA. Self-learning Topics: List the examples of PDA.	05	CO4	Commented [a59]: added
V	Turing Machine	Turing Machine: Deterministic TM, Variants of TM, Halting problem, Power of TM. Self-learning Topics: Practice numerical of TM.	07	CO5	Commented [a60]: added
VI	Applications of Automata	Applications of FA, CFG, PDA & TM. Introduction to Compiler & Its phases. Self-learning Topics: Case study on any one	03	CO2, CO3, CO4, CO5,	Commented [a61]: added

Text books

 J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
 Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India
 A. V. Aho, R. Shethi, Monica Lam , J.D. Ulman , "Compilers Principles, Techniques and Tools ", Pearson Education.

References

1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory,

Languages and Computation", Pearson Education.2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.

3. Vivek Kulkarni," Theory of Computation", Oxford University.

4. N.Chandrashekhar, K.L.P. Mishra, "Theory of Computer Science, Automata Languages &

Computations", PHI publications. 5. J. J. Donovan, "Systems Programming", TMH.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://online.stanford.edu
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
Name		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC405	Computer Organization and Architecture	03			03			03

Course	Course				Examina	ation Scheme		
Code	Name		Theo	ry Marks				Total
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Flact. /Olai	Total
ITC405	Computer Organization and Architecture	20	20	20	80			100

Course Objectives:

Commented [a62]: Format of course objectives

Sr. No.	Course Objectives
The cour	se aims:
1	Learn the fundamentals of Digital Logic Design.
2	Conceptualize the basics of organizational and features of a digital computer.
3	Study microprocessor architecture and assembly language programming.
4	Study processor organization and parameters influencing performance of a processor.
5	Analyse various algorithms used for arithmetic operations.
6	Study the function of each element of memory hierarchy and various data transfer techniques used in digital computer.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On su	ccessful completion, of course, learner/student will be able to:	
1	Demonstrate the fundamentals of Digital Logic Design	L1, L2
2	Describe basic organization of computer, the architecture of 8086 microprocessor and implement assembly language programming for 8086 microprocessors.	L1
3	Demonstrate control unit operations and conceptualize instruction level parallelism.	L1, L2
4	List and Identify integers and real numbers and perform computer arithmetic operations on integers.	L1,L4
5	Categorize memory organization and explain the function of each element of a memory hierarchy.	L4
6	Examine different methods for computer I/O mechanism.	L3

Prerequisite: Basics of Electrical Engineering, Fundamentals of Computer.

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Basics of Electrical Engineering, Fundamentals of Computer	02	
I	Fundamentals of Logic Design	Number systems: Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number and their conversions, 1's and 2's complement Combinational Circuits: NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR Gates. Half & Full Adder and subtractor, Reduction of Boolean functions using K-map method (2,3,4 Variable), introduction to Multiplexers and Demultiplexers, Encoders & Decoders.	07	CO1

Commented [a63]: Course outcomes with bloom's level

	<u> </u>	Sequential Circuits: Introduction to Flip Flops: SR, JK,				
I		D, T, master slave flip flop, Truth Table		I		
I		Self-learning Topics: Practice numerical on		I		Commented [a64]: added
1		Logic Design.		1	(commented [ao4]. adda
П	Overview of	Introduction of Computer Organization and	08	CO2		
	Computer	Architecture. Basic organization of computer and block	00			
1	Architecture &	level description of the functional units. Evolution of		I		
1	Organization	Computers, Von Neumann model. Performance		I		
1	org	measure of Computer Architecture, Amdahl's Law		I		
1		Architecture of 8086 Family, Instruction Set,		I		
1		Addressing Modes, Assembler Directives, Mixed-		I		
1		Language Programming, Stack, Procedure, Macro		I		
1		Self-learning Topics: Study 8085 Architecture.			1	Commented [a65]: added
III	Processor	CPU Architecture. Instruction formats, basic	07	CO3	(commented [aos]. adda
	Organization and	instruction cycle with Interrupt processing. Instruction	Ŭ.			
1	Architecture	interpretation and sequencing. Control Unit: Soft wired		I		
1		(Microprogrammed) and hardwired control unit design				
1		methods. Microinstruction sequencing and execution.		I		
1		Micro operations, concepts of nano programming.				
1		Introduction to parallel processing concepts, Flynn's		I		
1		classifications, instruction pipelining, pipeline hazards.				
1		Self-learning Topics: Study the examples on				Commented [a66]: added
		instruction pipelining for practice.				
IV	Data	Booth's algorithm. Division of integers: Restoring and	04	CO4		
1	Representation and	non-restoring division, signed division, basics of		I		
1	Arithmetic	floating-point representation IEEE 754 floating point				
1	Algorithms	(Single & double precision) number representation.				
1		Self-learning Topics: Implement Booth's				Commented [a67]: added
		Algorithm.				
v	Memory	Introduction to Memory and Memory parameters.	07	CO5		
1	Organization	Classifications of primary and secondary memories.				
1		Types of RAM and ROM, Allocation policies, Memory		I		
1		hierarchy and characteristics. Cache memory: Concept,				
1		architecture (L1, L2, L3), mapping techniques. Cache				
1		Coherency, Interleaved and Associative memory		I		
1		Self-learning Topics: Case study on Memory]			Commented [a68]: added
		Organization.				
VI	I/O Organization	Input/output systems, I/O module-need & functions	04	CO6		
1		and Types of data transfer techniques: Programmed		I		
1		I/O, Interrupt driven I/O and DMA				
1		Self-learning Topics: Compare Interrupt driven]			Commented [a69]: added
		I/O and DMA.	1	1 1		

- 1. R. P. Jain,"Modern Digital Electronics", TMH
- 2. M. Morris Mano,"Digital Logic and Computer Design", PHI
- 3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, Fifth Edition, Tata McGraw-Hill.
- 4. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition,, Pearson
- 5. John Uffenbeck, 8086/8088 family: Design Programming and Interfacing, (Pearson Education **References:**
 - 1. A. Anand Kumar, "Fundamentals of Digital Circuits", PHI
 - 2. Donald P Leach, Albert Paul Malvino, "Digital Principals & Applications", TMH.
 - 3. B. Govindarajulu,, Computer Architecture and Organization: Design Principles and Applications, Computer Architecture and Organization: Design Principles and Applications, Tata McGraw-Hill
 - 4. Dr. M. Usha, T. S. Srikanth, Computer System Architecture and Organization, First Edition, Wiley-India.
 - 5. John P. Hayes, Computer Architecture and Organization, Third Edition., McGraw-Hill
 - 6. K Bhurchandi, Advanced Microprocessors & Peripherals, Tata McGraw-Hill Education

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.geeksforgeeks.org
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Lab Code	Lab Name	Teaching (Contact			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC401	Network Lab		02			01		01

Lab Code	Lab Name				Examina	ation Scheme		
			Theo	ry Marks				
		Internal assessment		End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Plact. /Olai	Total
ITC401	Network Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives						
The Lab e	The Lab experiments aims:						
1	1 To get familiar with the basic network administration commands						
2	To install and configure network simulator and learn basics of TCL scripting.						
3 To understand the network simulator environment and visualize a network topole							
	observe its performance						
4	To implement client-server socket programs.						
5	To observe and study the traffic flow and the contents of protocol frames.						
6	To design and configure a network for an organization						

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy				
On suc	On successful completion, of course, learner/student will be able to:					
1	Execute and evaluate network administration commands and demonstrate their use in different network scenarios	L3, L5				
2	Demonstrate the installation and configuration of network simulator.	L1, L2				
3	Demonstrate and measure different network scenarios and their performance behavior.	L1, L2				
4	Implement the socket programming for client server architecture.	L3				
5	Analyze the traffic flow of different protocols	L4				
6	Design a network for an organization using a network design tool	L6				

Prerequisite: C /Java

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark), C/Java/python

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Programming Language (C/Java), Basic commands of windows and Unix/Linux operating system. editor commands (eg nano/vi editor etc)	02	-
Ι	Fundamentals of Computer Network	Understanding Basic networking Commands: ifconfig, ip, traceroute, tracepath, ping, netstat, ss, dig, nslookup, route, host, arp, hostname, curl or wget, mtr, whois, tcpdump • Execute and analyze basic networking commands.	02	LO1
II	Basics of Network simulation	Installation and configuration of NS2. Introduction to Tcl Hello Programming • Installation and configuring of NS-2 simulator and introduction to Tcl using Hello program	02	LO2
Ш	Simulation of Network Topology with different Protocols	 Implementation of Specific Network topology with respect to 1. Number of nodes and physical layer configuration 2. Graphical simulation of network with Routing Protocols (Distance Vector/ Link State Routing) and traffic consideration (TCP, UDP) using NAM. 3. Analysis of network performance for quality of service parameters such as packet-delivery-ratio, delay and throughput 	06	LO3 LO5

		 Comparative analysis of routing protocols with respect to QOS parameters using Xgraph/gnuplot for different load conditions. Write TCL scripts to create topologies. Create and run traffics and analyze the result using NS2 Write TCL scripts for topology with Graphical simulation of traffic consideration (TCP, UDP) using NAM and plot the graph Implement distance vector and link state routing protocols in NS2. 		
IV	Socket Programming	 Socket Programming with C/Java/python 1. TCP Client, TCP Server 2. UDP Client, UDP Server To study and Implement Socket Programming using TCP. To study and Implement Socket Programming using UDP 	04	LO4
V	Protocol Analyzer	 Study of various Network Protocol Analyzer Tools like Wireshark, tcpdump, Windump, Microsoft Message Analyzer, Ettercap, Nirsoft SmartSniff etc. Install one of the Network protocol analyzer tools and analyze the traffic Study various network protocol analyzer tools and analyze the network traffics using one of the network protocol analyzer tools. 	04	LO5
VI	Network Design	 Network Design for an organization using the following concepts: Addressing (IP Address Assignment), Naming (DNS) Routing Perform remote login using Telnet Server Design a network for an organization using the concepts of Addressing (IP Address Assignment), Naming (DNS) and Routing. Also mention the internetworking devices used 	06	LO6

Computer Network Simulation in NS2 Basic Concepts and Protocol Implementation.-Prof Neeraj Bhargava, Pramod Singh Rathore, Dr.Ritu Bhargava, Dr.Abhishek Kumar, First Edition. BPB Publication.
 Packet analysis with Wire shark, Anish Nath, PACKT publishing

- 3. TCP/IP Protocol Suite 4th Edition by Behrouz A. Forouzan

References:

NS2.34 Manual
 Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems by Chris Sanders

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC402	Unix Lab		02			01		01

Lab Code	Lab Name	Examination Scheme							
		Theory Marks							
		Inte	rnal asse	ssment	End	Term Work Pract. /Oral Tota			
		Test1	Test 2	Avg.	Sem. Exam	Term Work	Pract. /Oral	Total	
ITC402	Unix Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives					
The Lab	The Lab experiments aims:					
1	1 To understand architecture and installation of Unix Operating System					
2	To learn Unix general purpose commands and programming in Unix editor environment					
3	To understand file system management and user management commands in Unix.					
4	To understand process management and memory management commands in Unix					
5	To learn basic shell scripting.					
6	To learn scripting using awk and perl languages.					

Lab Outcomes:

Sr. No.	Lab Outcomes Cognitive leve of attainment per Bloom's Taxonomy					
On suc	cessful completion, of course, learner/student will be able to:					
1	Understand the architecture and functioning of Unix L1, L2					
2	Identify the Unix general purpose commands	L4				
3	Apply Unix commands for system administrative tasks such as file system management and user management.	L3				
4	Execute Unix commands for system administrative tasks such as process management and memory management	L4				
5	Implement basic shell scripts for different applications.	L3				

6	Implement advanced scripts using awk & perl languages and grep, sed, etc.	L3
	commands for performing various tasks.	

Prerequisite: Programming Language C

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Unix, Editor, Bash shell, Bourne shell and C shell

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basic Programming Skills, Concepts of Operating System	02	-
Ι	Introduction to Unix	Case Study: Brief History of UNIX, Unix Architecture; Installation of Unix Operating System	03	LO1
II	Basic Commands	a) Execution of Unix General Purpose Utility Commands like echo, clear, exit, date, time, uptime, cal, cat, tty, man, which, history, id, pwd, whoami, ping, ifconfig, pr, lp, lpr, lpstat, lpq, lprm, cancel, mail, etc.	03	LO2
III	Commands for File System Management and	 b) Working with Editor Vi / other editor. a) Study of Unix file system (tree structure), file and directory permissions, single and multiuser environment. 	04	LO3
	User Management	 b) Execution of File System Management Commands like ls, cd, pwd, cat, mkdir, rmdir, rm, cp, mv, chmod, wc, piping and redirection, grep, tr, echo, sort, head, tail, diff, comm, less, more, file, type, wc, split, cmp, tar, find, vim, gzip, bzip2, unzip, locate, etc. 		
		c) Execution of User Management Commands like who, whoami, su, sudo, login, logout, exit, passwd, useradd/adduser, usermod, userdel, groupadd, groupmod, groupdel, gpasswd, chown, chage, chgrp, chfn, etc.		
IV	Commands for Process Management and	a) Execution of Process Management Commands like ps, pstree, nice, kill, pkill, killall, xkill, fg, bg, pgrep, renice, etc.	04	LO4
	Memory Management	 b) Execution of Memory Management Commands like free, /proc/meminfo, top, htop, df, du, vmstat, demidecode, sar, pagesize, etc. 		
V	Basic Scripts	 a) Study of Shell, Types of Shell, Variables and Operators b) Execute the following Scripts (at least 6): (i) Write a shell script to perform arithmetic operations 	04	L02, L03, L05
		operations. (ii) Write a shell script to calculate simple interest.		

VI	Advanced Scripts	 (iii) Write a shell script to determine largest among three integer numbers. (iv) Write a shell script to determine a given year is leap year or not. (v) Write a shell script to print multiplication table of given number using while statement. (vi) Write a shell script to search whether element is present is in the list or not. (vii) Write a shell script to compare two strings. (viii) Write a shell script to read and check if the directory / file exists or not, if not make the directory / file. (ix) Write a shell script to print following pattern: * ** *** *** *** (xi) Write a shell script to perform operations on directory like: display name of current directory; display list of directory contents; create another directory, write contents on that and copy it to a suitable location in your home directory; etc. 	06	L02,
		 commands: (i) Write a script using grep command to find the number of words character, words and lines in a file. (ii) Write a script using egrep command to display list of specific type of files in the directory. (iii) Write a script using sed command to replace all occurrences of particular word in given a file. (iv) Write a script using sed command to print duplicated lines in input. b) Execute the following scripts using awk / perl languages: 		L03, L06
		 (i) Write an awk script to print all even numbers in a given range. (ii) Write an awk script to develop a Fibonacci series (take user input for number of terms). (iii) Write a perl script to sort elements of an array. (iv) Write a perl script to check a number is prime or not. 		

S. Das, Unix Concepts and Applications, 4th ed., McGraw Hill, 2017.
 R. Michael, Mastering Unix Shell Scripting, 2nd ed., Wiley, 2008.

3. D. Ambawade, D. Shah, Linux Labs and Open Source Technologies, Dreamtech Press, 2014.

References:

- 1. Y. Kanetkar, Unix Shell Programming, BPB Publications, 2003.
- 2. B. Forouzan and R. Gilberg, Unix and Shell Programming, Cengage Learning, 2003.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code Lab Name			Teaching Scheme (Contact Hours)			Credits Assigned			
			Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
	ITC403	Microprocessor Lab		02			01		01

Lab	Lab Name	Examination Scheme							
Code		Theory Marks							
		Inte	ernal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Ava	Sem.	Term work		Total	
		Testi	Test 2	Avg.	Exam				
ITC403	Microprocessor Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives						
The Lab	The Lab experiments aims:						
1	1 Learn assembling and disassembling of PC						
2	Design, simulate and implement different digital circuits						
3	Get hands on experience with Assembly Language Programming.						
4	Study interfacing of peripheral devices with 8086 microprocessor.						
5	Realize techniques for faster execution of instructions and improve speed of operation						
	and performance of microprocessors.						
6	Write and debug programs in TASM/MASM/hardware kits						

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	cessful completion, of course, learner/student will be able to:	
1	Demonstrate various components and peripheral of computer system	L2
2	Analyze and design combinational circuits	L4, L6
3	Build a program on a microprocessor using arithmetic & logical instruction set of 8086.	L3
4	Develop the assembly level programming using 8086 loop instruction set	L6
5	Write programs based on string and procedure for 8086 microprocessor.	L1
6	Design interfacing of peripheral devices with 8086 microprocessor.	L6

Prerequisite: Logic Design, Programming Languages(C, C++)

Hardware & Software Requirements:

NOTE: Programs can be executed on assembler or hardware boards.

Hardware Requirement:	Software requirement:		
 Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), and Cabinet. 8086 microprocessor experiment kits with specified interfacing study boards 	 Microsoft Macro Assembler (TASM)/Turbo Assembler (TASM) Virtual simulator lab. Proteus design suite 		

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
Ι	PC Assembly	Study of PC Motherboard Technology (South Bridge and North Bridge), Internal Components and Connections used in computer system.	02	LO1
II	Implementation of combinational circuits	 Verify the truth table of various logic gates (basic and universal gates) Realize Half adder and Full adder Implementation of MUX and DeMUX 	06	LO2
III	Arithmetic and logical operations in 8086 Assembly language programming	 Program for 16 bit BCD addition Program to evaluate given logical expression. Convert two digit Packed BCD to Unpacked BCD. (any two) 	05	LO3
IV	Loop operations in 8086 Assembly language	1. Program to move set of numbers from one memory block to another.	06	LO4

	programming	 Program to count number of 1's and 0's in a given 8 bit number Program to find even and odd numbers from a given list Program to search for a given number (any three) 		
V	String & Procedure in 8086 Assembly language programming	 Check whether a given string is a palindrome or not. Compute the factorial of a positive integer 'n' using procedure. OR Generate the first 'n' Fibonacci numbers. 	04	LO5
VI	Interfacing with 8086 microprocessor	 Interfacing Seven Segment Display Interfacing keyboard matrix Interfacing DAC (any one) 	03	LO6

- 1. Scott Mueller, "Upgrading and repairing PCs", Pearson,
- R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
 John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching (Contact			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITC404	Python Lab (SBL)		04			02		02

Lab Code	Lab Name				Examina	ation Scheme					
			Theo	ry Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total			
		Test1	Test 2	Avg.	Sem. Exam	Term work	Plact. /Olai	Total			
ITC404	Python Lab (SBL)					25	25	50			

Lab Objectives:

Lab Objectives
experiments aims:
Basics of python including data types, operator, conditional statements, looping statements, input and output functions in Python
List, tuple, set, dictionary, string, array and functions
Object Oriented Programming concepts in python
Concepts of modules, packages, multithreading and exception handling
File handling, GUI & database programming
Data visualization using Matplotlib, Data analysis using Pandas and Web programming using Flask

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suc	ccessful completion, of course, learner/student will be able to:	
1	Understand the structure, syntax, and semantics of the Python language.	L1, L2
2	Interpret advanced data types and functions in python	L1, L2
3	illustrate the concepts of object-oriented programming as used in Python	L2
4	Create Python applications using modules, packages, multithreading and exception handling.	L6
5	Gain proficiency in writing File Handling programs ,also create GUI applications and evaluate database operations in python.	L1, L2
6	Design and Develop cost-effective robust applications using the latest Python trends and technologies	L6

Prerequisite: Structured Programming Approach & Java Programming Lab

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With following Configuration	1. Windows or Linux Desktop OS	1. Internet Connection for installing additional packages if required
e	2. Python 3.6 or higher	
1. Intel Dual core Processor or higher	3. Notepad ++	
2. Minimum 2 GB RAM	4.Python IDEs like IDLE, Pycharm, Pydev, Netbeans or	
3. Minimum 40 GB Hard	Eclipse	
disk	5. Mysql	
4. Network interface card		

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Python IDE installation and environment setup.	02	
I	Basics of Python	Introduction, Features, Python building blocks – Identifiers, Keywords, Indention, Variables and Comments, Basic data types (Numeric, Boolean, Compound) Operators: Arithmetic, comparison, relational, assignment, logical, bitwise, membership, identity operators, operator precedence Control flow statements: Conditional statements (if, ifelse, nested if) Looping in Python (while loop, for loop, nested loops) Loop manipulation using continue, pass, break. Input/output Functions, Decorators, Iterators and Generators.	08	LO 1
П	Advanced data types & Functions	Lists: a) Defining lists, accessing values in list, deleting values in list, updating lists b) Basic list operations c) Built-in list functions Tuples: a) Accessing values in Tuples, deleting values in Tuples, and updating Tuples b) Basic Tuple operations c) Built-in Tuple functions Dictionaries: a) Accessing values in Dictionary, deleting values in Dictionary, and updating Dictionary b) Basic Dictionary operations c) Built-in Dictionary functions Sets: a) Accessing values in Set, deleting values in Set, updating Sets b) Basic Set operations, c) Built-in Set functions Strings: a) String initialization, Indexing, Slicing, Concatenation, Membership & Immutability b) Built-in String functions Arrays: Creating, importing, Indexing, Slicing, copying and processing array arrays. b) Working with Multi-dimensional Arrays using Numpy: Mathematical operations, Matrix operations, aggregate and other Built-in functions	09	LO 1 LO 2

		Functions: a) Built-in functions in python b) Defining function, calling function, returning values, passing parameters c) Nested and Recursive functions d) Anonymous Functions (Lambda, Map, Reduce, Filter)		
III	Object Oriented Programming	Overview of Object-oriented programming, Creating Classes and Objects, Self-Variable, Constructors, Inner class, Static method, Namespaces. Inheritance: Types of Inheritance (Single, Multiple, Multi-level, Hierarchical), Super() method, Constructors in inheritance, operator overloading, Method overloading, Method overriding, Abstract class, Abstract method, Interfaces in Python.	08	LO 1 LO 3
IV	Exploring concept of modules, packages, multithreading and exception handling	Modules: Writing modules, importing objects from modules, Python built-in modules (e.g. Numeric and Mathematical module, Functional Programming module, Regular Expression module), Namespace and Scoping. Packages: creating user defined packages and importing packages. Multi-threading: process vs thread, use of threads, types of threads, creating threads in python, thread synchronization, deadlock of threads. Exception handling: Compile time errors, Runtime errors, exceptions, types of exception, try statement, except block, raise statement, Assert statement, User-Defined Exceptions.	06	LO 1 LO 4
V	File handling, GUI & database programming	File Handling: Opening file in different modes, closing a file, writing to a file, accessing file contents using standard library functions, reading from a file – read (), readline (), readlines (), Renaming and Deleting a file, File Exceptions, Pickle in Python. Graphical user interface (GUI): different GUI tools in python (Tkinter, PyQt, Kivy etc.), Working with containers, Canvas, Frame, Widgets (Button, Label, Text, Scrollbar, Check button, Radio button, Entry, Spinbox, Message etc.) Connecting GUI with databases to perform CRUD operations. (on supported databases like SQLite, MySQL, Oracle, PostgreSQL etc.).	09	LO 1 LO 5
VI	Data visualization, analysis and web programming using python	Visualization using Matplotlib: Matplotlib with Numpy, working with plots (line plot, bar graph, histogram, scatter plot, area plot, pie chart etc.), working with multiple figures. Data manipulation and analysis using Pandas: Introduction to Pandas, importing data into Python, series, data frames, indexing data frames, basic operations with data frame, filtering, combining and merging data frames, Removing Duplicates. SciPy: Linear algebra functions using Numpy and Scipy. Web programming: Introduction to Flask, Creating a Basic Flask Application, Build a Simple REST API using Flask	10	LO 1 LO 6

List of Experiments/Mini-Project.

1)	 Write python programs to understand a) Basic data types, Operators, expressions and Input Output Statements b) Control flow statements: Conditional statements (if, ifelse, nested if) c) Looping in Python (while loop, for loop, nested loops) d) Decorators, Iterators and Generators.
2)	 Write python programs to understand a) Different List and Tuple operations using Built-in functions b) Built-in Set and String functions c) Basic Array operations on 1-D and Multidimensional arrays using Numpy d) Implementing User defined and Anonymous Functions
3)	 Write python programs to understand a) Classes, Objects, Constructors, Inner class and Static method b) Different types of Inheritance c) Polymorphism using Operator overloading, Method overloading, Method overriding, Abstract class, Abstract method and Interfaces in Python.
4)	 Write python programs to understand a) Creating User-defined modules/packages and import them in a program b) Creating user defined multithreaded application with thread synchronization and deadlocks c) Creating a menu driven application which should cover all the built-in exceptions in python
5)	 Write python programs to understand a) Different File Handling operations in Python b) Designing Graphical user interface (GUI) using built-in tools in python (Tkinter, PyQt, Kivy etc.). c) GUI database connectivity to perform CRUD operations in python (Use any one database like SQLite, MySQL, Oracle, PostgreSQL etc.)
6)	 Write python programs to implement a) Different types of plots using Numpy and Matplotlob b) Basic operations using pandas like series, data frames, indexing, filtering, combining and merging data frames. c) Different Linear algebra functions using Scipy. d) A Basic Flask Application to build a Simple REST API.

Mini Project

Mini-project have to be developed in a group of three students which should cover all above topics. Suggested Mini-Project Topics:

1. Railway reservation	27 IT Team	52. Business Directory	78. Practice Test	
system	Workspace		Management.	
2. Inventory Management	29 Job Requisition and	53. Education	79. Asset Management	
system.	Interview Management	Directory	System	
3 Classroom Management	28 Knowledge Base	54. Dental Clinic	80. Travel Agency	
_		Management	System.	
4 Clinical Trial Initiation	29 Lending Library	55. Fund Raising	81. Placement	
and Management	-	Management	Management System.	

5 Competitive Analysis Web Site	30 Physical Asset Tracking and	56. Clinic/ Health Management	82. Polls Management		
6 Discussion Forum	Management 31 Project Tracking	57. Cable Management	83. Customer		
website	Workspace	System	Management		
7 Disputed Invoice	32. Shopping Cart .	58. Survey Creation	84. Project		
Management		and Analytics	Management System.		
8 Employee Training	33 Knowledge Base	59. Museum	85. Network Marketing		
Scheduling and Materials		Management System	System		
9 Equity Research	34 Lending Library	60. Multi-Level	86. Yoga Health Care		
Management	S · Denuing Diotary	Marketing System	Management		
10 Integrated Marketing	35 Physical Asset	61. Learning	87. Personal Finance		
Campaign Tracking	Tracking and Management	Management System	Management System		
11 Manufacturing Process	36 Project Tracking	62. Knowledge	88. Real Estate		
Managements	Workspace	Management System	Management System		
12 Product and Marketing	37 Room and	63. Missing Person	89. Stock Mutual		
Requirements Planning	Equipment Reservations	Site	Funds Management		
13 Request for Proposal	38 Sales Lead Pipeline	64. Disaster	90. Careers and		
Software	r	Management Site	Employment		
		5	Management System		
14 Sports League	39. Yellow Pages &	65. Job Management	91. Music Albums		
Management			Management System		
15 Absence Request and	40. Time & Billing	66. Financial Portfolio	92. Classified Ads		
Vacation Schedule		Management	Managements		
Management					
16 Budgeting and Tracking	41. Class Room	67. Market Research	93. Property		
Multiple Projects	Management	Management	Management System		
17 Bug Database	42. Expense Report	68. Order Management	94. Sales & Retail		
Management	Database	System	Management		
18 Call Center	43. Sales Contact	69. Point of Sale	95. Dating Site		
Management Software	Management Database				
19 Change Request	44. Inventory	70. Advertisement	96. Hotel Management		
Management	Management Database	/Banner Management and Analytics	System		
20 Compliance Process	45. Issue Database	71. Export	97. Search Engine		
Support Site		Management System			
21 Contacts Management	46. Event Management	72. Invoice	98. Online News Paper		
Software	Database	Management	Site		
22 Document Library and	47. Service Call	73. Recruitment	99. Image Gallery		
Review	Management Database	Management System			
23 Event Planning and	48. Accounting Ledger	74. Articles / Blog /	100. Staffing and		
Management	Database	Wiki Web site	Human Capital		
			Management		
24 Expense Reimbursement	49. Asset Tracking	75. Online Planner	101. Development of a		
and Approval	Database		feature-rich, practical		
**			Online Survey Tool		
			(OST)		
25 Help Desk and Ticket	50. Cycle Factory	76. Mock Tests and	102 Development of a		
Management	Works Management	Examination	Web/Email based		
c		Management	Search Engine		
26 Inventory Tracking	51. Sales Corporation	77. Examination	103. Development of a		
	Management	System	web-based		
	Ŭ	-	Recruitment Process		
			System for the HR		
	1	1	group for a company		

1. Dr. R. Nageswara Rao," Core Python Programming", Dreamtech Press, Wiley Publication

 M. T. Savaliya , R. K. Maurya, "Programming through Python", StarEdu Solutions.
 E Balagurusamy, "Introduction to computing and problem-solving using python", McGraw Hill Publication.

References:

- 1. Zed A. Shaw, "Learn Python 3 the Hard Way", Zed Shaw's Hard Way Series.
- Martin C. Brown," Python: The Complete Reference", McGraw-Hill Publication.
 Paul Barry," Head First Python", 2nd Edition, O'Reilly Media, Inc.

Online resources:

- https://docs.scipy.org/doc/numpy/user/quickstart.html
 https://matplotlib.org/tutorials/
- 3) https://pandas.pydata.org/docs/getting_started/
- 4) https://www.geeksforgeeks.org/python-build-a-rest-api-using-flask/

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITM401	Mini Project – 1 B for Python based automation projects		04			02		02

Course	Course Name	Examination Scheme						
Code		Theory Marks						
		Internal assessment			End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam	Term work	Tract. /Orai	Totai
ITM401	Mini Project – 1 B for Python based automation projects					25	25	50

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problems in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students shall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly
 activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty may give inputs during mini project activity; however, focus shall be on self-learning.

- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.

Guidelines for Assessment of Mini Project:

Term Work

- The review/ progress monitoring committee shall be constituted by Head of Departments of each institute. The progress of Mini-Project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
 - Distribution of Term work marks for both semester shall be as below;
 - \circ Marks awarded by guide/supervisor based on log book : 10
 - Marks awarded by review committee : 10
 - Quality of Project report : 05

In Odd semester:

- In this semester students shall present a seminar on Mini project and demonstrate their understanding of need/problem.
- Term work shall be assessed by review/progress monitoring committee appointed by the Head of the Department/Institute of respective Programme.
- In this semester entire theoretical solution shall be ready, including components/system selection and cost analysis.

Mini Project A shall be assessed based on following points

- 7. Quality of survey/ need identification
- 8. Clarity of Problem definition based on need.
- 9. Innovativeness in solutions
- 10. Feasibility of proposed problem solutions and selection of best solution
- 11. Cost effectiveness
- 12. Societal impact

In Even semester:

- In this semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
- First review is based on readiness of building working prototype to be conducted.
- Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.
- Term work shall be assessed by review/progress monitoring committee appointed by the Head of the Department/Institute of respective Programme.

Mini Project B shall be assessed based on following points

- 8. Innovativeness
 - 9. Cost effectiveness and Societal impact
 - 10. Full functioning of working model as per stated requirements
 - 11. Effective use of skill sets
 - 12. Effective use of standard engineering norms
 - 13. Contribution of an individual's as member or leader
 - 14. Clarity in written and oral communication

Guidelines for Assessment of Mini Project Practical/Oral Examination in Even semester:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners approved by the University of Mumbai
 - Students shall be motivated to publish a paper based on the work in Conferences/students competitions.
- Mini Project shall be assessed based on following points;
 - 9. Quality of problem and Clarity
 - 10. Innovativeness in solutions

٠

- 11. Cost effectiveness and Societal impact
- 12. Full functioning of working model as per stated requirements
- 13. Effective use of skill sets
- 14. Effective use of standard engineering norms
- 15. Contribution of an individual's as member or leader
- 16. Clarity in written and oral communication